160 research outputs found

    Realizability algebras: a program to well order R

    Full text link
    The theory of classical realizability is a framework in which we can develop the proof-program correspondence. Using this framework, we show how to transform into programs the proofs in classical analysis with dependent choice and the existence of a well ordering of the real line. The principal tools are: The notion of realizability algebra, which is a three-sorted variant of the well known combinatory algebra of Curry. An adaptation of the method of forcing used in set theory to prove consistency results. Here, it is used in another way, to obtain programs associated with a well ordering of R and the existence of a non trivial ultrafilter on N

    Hybrid realizability for intuitionistic and classical choice

    Get PDF
    International audienceIn intuitionistic realizability like Kleene's or Kreisel's, the axiom of choice is trivially realized. It is even provable in Martin-Löf's intu-itionistic type theory. In classical logic, however, even the weaker axiom of countable choice proves the existence of non-computable functions. This logical strength comes at the price of a complicated computational interpretation which involves strong recursion schemes like bar recursion. We take the best from both worlds and define a realizability model for arithmetic and the axiom of choice which encompasses both intuitionistic and classical reasoning. In this model two versions of the axiom of choice can co-exist in a single proof: intuitionistic choice and classical countable choice. We interpret intuitionistic choice efficiently, however its premise cannot come from classical reasoning. Conversely, our version of classical choice is valid in full classical logic, but it is restricted to the countable case and its realizer involves bar recursion. Having both versions allows us to obtain efficient extracted programs while keeping the provability strength of classical logic

    Existential witness extraction in classical realizability and via a negative translation

    Full text link
    We show how to extract existential witnesses from classical proofs using Krivine's classical realizability---where classical proofs are interpreted as lambda-terms with the call/cc control operator. We first recall the basic framework of classical realizability (in classical second-order arithmetic) and show how to extend it with primitive numerals for faster computations. Then we show how to perform witness extraction in this framework, by discussing several techniques depending on the shape of the existential formula. In particular, we show that in the Sigma01-case, Krivine's witness extraction method reduces to Friedman's through a well-suited negative translation to intuitionistic second-order arithmetic. Finally we discuss the advantages of using call/cc rather than a negative translation, especially from the point of view of an implementation.Comment: 52 pages. Accepted in Logical Methods for Computer Science (LMCS), 201

    Realizability Interpretation and Normalization of Typed Call-by-Need λ\lambda-calculus With Control

    Get PDF
    We define a variant of realizability where realizers are pairs of a term and a substitution. This variant allows us to prove the normalization of a simply-typed call-by-need \lambda$-$calculus with control due to Ariola et al. Indeed, in such call-by-need calculus, substitutions have to be delayed until knowing if an argument is really needed. In a second step, we extend the proof to a call-by-need \lambda-calculus equipped with a type system equivalent to classical second-order predicate logic, representing one step towards proving the normalization of the call-by-need classical second-order arithmetic introduced by the second author to provide a proof-as-program interpretation of the axiom of dependent choice

    BigraphER: rewriting and analysis engine for bigraphs

    Get PDF
    BigraphER is a suite of open-source tools providing an effi- cient implementation of rewriting, simulation, and visualisation for bigraphs, a universal formalism for modelling interacting systems that evolve in time and space and first introduced by Milner. BigraphER consists of an OCaml library that provides programming interfaces for the manipulation of bigraphs, their constituents and reaction rules, and a command-line tool capable of simulating Bigraphical Reactive Systems (BRSs) and computing their transition systems. Other features are native support for both bigraphs and bigraphs with sharing, stochastic reaction rules, rule priorities, instantiation maps, parameterised controls, predicate checking, graphical output and integration with the probabilistic model checker PRISM

    Zipf's law in Multifragmentation

    Full text link
    We discuss the meaning of Zipf's law in nuclear multifragmentation. We remark that Zipf's law is a consequence of a power law fragment size distribution with exponent τ≃2\tau \simeq 2. We also recall why the presence of such distribution is not a reliable signal of a liquid-gas phase transition

    Interaction Graphs: Full Linear Logic

    Get PDF
    Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite), provides a model for full linear logic with second order quantification

    Strongly damped nuclear collisions: zero or first sound ?

    Get PDF
    The relaxation of the collective quadrupole motion in the initial stage of a central heavy ion collision at beam energies Elab=5Ă·20E_{lab}=5\div20 AMeV is studied within a microscopic kinetic transport model. The damping rate is shown to be a non-monotonic function of E_{lab} for a given pair of colliding nuclei. This fact is interpreted as a manifestation of the zero-to-first sound transition in a finite nuclear system.Comment: 15 pages, 4 figure

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    Neutron Drops and Skyrme Energy-Density Functionals

    Full text link
    The Jπ^{\pi}=0+^+ ground state of a drop of 8 neutrons and the lowest 1/2−^- and 3/2−^- states of 7-neutron drops, all in an external well, are computed accurately with variational and Green's function Monte Carlo methods for a Hamiltonian containing the Argonne v18v_{18} two-nucleon and Urbana IX three-nucleon potentials. These states are also calculated using Skyrme-type energy-density functionals. Commonly used functionals overestimate the central density of these drops and the spin-orbit splitting of 7-neutron drops. Improvements in the functionals are suggested
    • 

    corecore